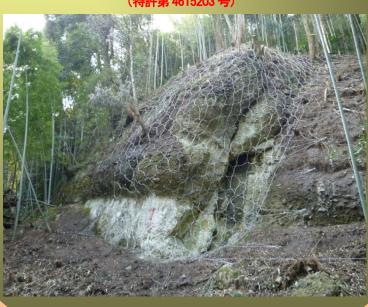
一ステンレス製ワイヤーリング仕様一

落石/崩壊対策

クラッシュネット工法

(特許筆 4615203 号)



アンカーネット工法

(特開 2010−174598)

(特許第 4615203 号)

くさび型アンカー工法研究会

ワイヤーネット被覆工法実証試験

【転倒実験】ワイヤーネットで被覆されたコンクリ―球は傾斜45°で一体的に転倒. 高さ2m(重心位置)から転倒しても一体化を保っており, 部材にも損 傷は認められなかった. …実験仕様:コンクリート球 4ヶ(φ 1m, 総重量 4.8t), ワイヤーリングφ 35cm, ワイヤーロープ径 8mm

①傾斜 40°

②同左反対側

③傾斜 45°で転倒


【滑動実験】 コンクリート球3 ケをワイヤーネットで被覆し、重さ45kgのアンカー(土嚢)を取り付けた状態で実験台を徐々に傾けた結果、傾斜30°で 滑動. コンクリート球と鋼板の摩擦角は約20°であり、わずかなアンカーカにより傾斜10°分の安定度向上が確認できた. ···実験仕様:コンクリート球3ヶ(総重量3.6t), ワイヤーリングは転倒実験に同じ.

①アンカー取り付け状況(土嚢 45kg)

②傾斜 30°

上記実験に続き、さらに吊り上げた結果(写真一③) アンカーロープ(φ 8mm)が破断しコンクリート球(3 f) が一体的に落下.

落下後も一体化を保っており、ワイヤーネットによる 拘束力の高さ等が実証された.

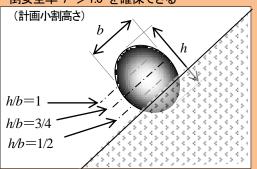
③鋼板をさらに吊り上げた状態

【落下後の部材点検】

連結金具

ワイヤーリングを構築するスリーブ

【ワイヤーネットの強度確認試験】



ワイヤーリング 1 ヶで 3.6t を吊り上げた状態

クラッシュネット工法

【小割の目安】

高さんの半分以上をはつることで地震時転 倒安全率"F > 1.0"を確保できる

1.05

0.88

0.74

0.61

はつり高さと地震時転倒安全率 h/b θ (°) 3/4 1/2 30 1.26 1.67 2.51

1.40

1.18

0.99

0.82

2.11

1.77

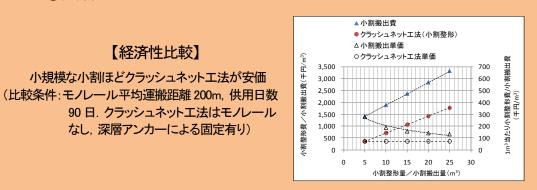
1.48

1.22

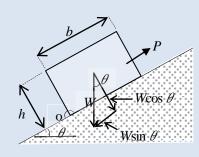
②転落防止用アンカー取り付け

【経済性比較】

90 日. クラッシュネット工法はモノレール


なし、深層アンカーによる固定有り)

小規模な小割ほどクラッシュネット工法が安価



④ネット内で安定形状に小割整形

ワイヤーネット被覆工法

【石の安定解析: 地震時の滑動および転倒に対して検討】 (目標安全率 F,=2.0:ロープ掛工に準ずる)

₩:石の重量

- θ:石が地山と接する面の傾斜角
- u:石と地山との摩擦係数

35

40

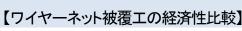
45

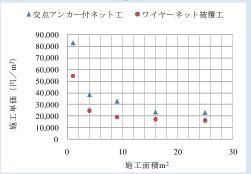
50

- k,: 地震時水平震度
- b: 斜面傾斜方向の石の長さ
- h: 石の高さ
- P:アンカーカ

【設計計算例】

- ○不安定な転石 W₁~W₂をワイヤーネットで一体的に被覆した時の転石群全体の安全率は 表より地震時滑動 F=1.18, 地震時転倒 F=1.93.
- 〇目標安全率(Fp=2.0)に対する所用抑止力は P=16.1kN であり, 深層アンカーによりこれ を与えれば転石群全体を安定化できる.


W₄=29.4kN(安定) W₃=30.7kN(安定) \ $W_1 = 108.9 kN$ 石の単位体積重量 γ_t = 26 (ダクタイル製) リング式ワイヤーネット (ステンレス製)

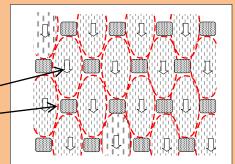

深層アンカー(抑止力 16.1kN)

- ・深層部にアンカーカを伝えることで、アンカー体 の剥離進行を防止する.
- ・部材全体を二重防錆とすることで耐久性を強化

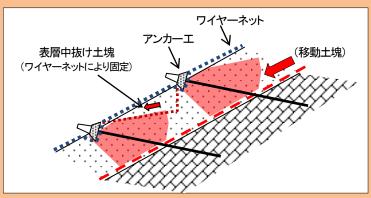
	1		1 .									
水平震度 $k_h =$			0.15									
見掛けの摩擦係数 $\mu = 0.8390$												
石の直径と地山面傾斜角					安全率と所用引張力					B 4.31		
No	幅	奥行	高さ	角度	重量	平洋	常時	地震時滑動		地震時転倒		最大引 張力 P
	a	b	h	θ	W	F_S	P_1 F_{SE}	P_2	F_{RE}	P_3	(kN)	
	(m)	(m)	2.0	(°)	(kN)		(kN)	1 SE	(kN)	1 RE	(kN)	(KI 1)
\mathbf{W}_1	2.0	2.0	2.0	40	108.9	1.000	35.0	0.741	21.3	0.884	9.6	35.0
\mathbf{W}_2	1.5	1.5	1.5	30	46.0	1.453	6.3	1.053	0.0	1.256	0	6.3
W_3	1.0	1.5	1.5	0	30.7			5.596	0.0	6.667	0	
W_4	1.2	1.5	1.2	0	29.4			5.590	0.0	8.333	0	
Σ					215.02	1.655	16.1	1.179	0.0	1.929	0.0	16.1

(深層アンカーによる ネット端部固定状況)

(敷設面積が小さいほどワイヤーネット被覆工法の方が安価となる)


〇地震時滑動安全率

$$F_{SE} = \frac{(W\cos\theta - k_h \cdot W\sin\theta)\mu}{W\sin\theta + k_h \cdot W\cos\theta - P}$$


〇地震時転倒安全率

 $F_{RE} = (W\cos\theta \cdot b/2 - k_h \cdot W\sin\theta \cdot b/2)/(W\sin\theta \cdot h/2 + k_h \cdot W\cos\theta \cdot h/2 - P \cdot h/2)$

【アンカーネット工による抑止の考え方】

(アンカーエの配置とこれに規制 される表層すべりブロック)

(アンカー受圧版による抑止範囲とワイヤーネットによる抑止土塊)

落石源も補助ネット併用により同時固定可

【経済性比較】

(層厚 2.5m 程度以上ではアンカー ネットエの方が安価となる)

アンカーネット工法

アンカーエに規制される表層中抜けブロック

・移動土塊の確実な抑止

•アンカー材の二重防錆による長期耐久性の確保

アンカーエ

-主要資材—

3連

【ワイヤーリング】

- ·材 質:SUS(7×19)
- •ワイヤー径:φ8mm
- •ワイヤーリング径:φ 35, 60, 85cm
- ·引張強度:35kN 以上/本
- •許容引張強度:17.5kN/本

シングル (間詰め用)

【連結金具】

- •材質:FCMB31-08 溶融亜鉛メッキ
- •許容引張強度 35kN, 0.3kg/ケ

ローインコンメンスと	E JUNIA, U.UNE/	7
リング径 (cm)	1m ² 当たり リング数 (ヶ)	標準連結 金具数
35	9.43	19A
60	3.21	8A
85	1.60	3A

(A:敷設面積)

ワイヤーリン グの連結状態

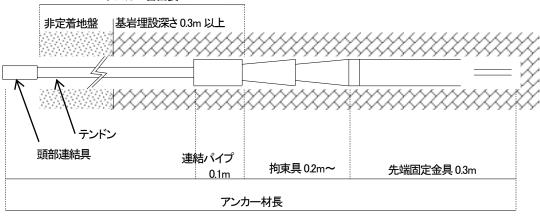
【アンカーピン】

- ・材質: FCD45(溶融亜鉛メッキ)
- •許容引張強度 35kN, 1kg/本

【定着材】

セメントカプセル:Cタイト

定着材可使時間(20°c)


品 種	可使時間	強度(10MPa)発現時間
早強型(Q)	15分	3時間
標準型(S)	40分	24 時間
湧水型(W)	20分	5 時間

【深層用アンカー】

- ・頭部連結具(S45C 溶融亜鉛メッキ)
- ·拘束具(FCMB31-08)300Ws 型(最大許容荷重 343.8kN)
- ・先端固定金具(STK, SS400 三価クロムメッキ)
- ・連結パイプ(STKM13A 三価クロムメッキ)
- ・PC 鋼より線: 超耐久性 SUPRO ストランド(熱可塑性樹脂被覆+アンボンドシース)


ケーブル径	シースパイプ	許容荷重 kN	降伏荷重	備考
mm	外径 mm	(永久)	kN	1/11 /5
12.7	19.0	109.8	156	0.8kg/m

アンカー自由長

深層用アンカー構造図

くさび型アンカー工法研究会