基本調査試験結果に基づく深層アンカーの設計

1. 試験仕様

1.1 試験構造図

試験は図-1.1 のように行った.

図-1.1 基本調査試験構造図

1.2 荷重サイクル(kN)

試験荷重は下記の5サイクル (最大荷重100kN, 10kN ピッチ) とした.

- (1) 10 20 10
- 2 10 20 30 40 30 20 10
- 3 10 20 30 40 50 40 30 20 10
- 4 10 30 50 70 80 70 50 30 10
- (5) 10 30 50 70 80 90 100 90 80 70 50 30 10 (kN)

2. 試験結果

2.1 荷重-弾性変位・塑性変位量曲線より

測定結果は表-2.1 のようであり、これに基づく荷重-変位量曲線を図-2.1 に示す。同図より、荷重 100kN までの塑性変位量は0.18mm と極めて小さく、"引き抜け"といった現象は認められない。

表-2.1 荷重-弹性変位・塑性変位量

#4	田体本仏具	业业本人目	知此本件目	
荷重	累積変位量	弾性変位量	塑性変位量	
(kN)	(mm)	(mm)	(mm)	
10	0.00		·····	
20	0.02	0.01	0.01	
10	0.01			
20	0.02			
30	0.04			
40	0.05	0.03	0.02	
30	0.04			
20	0.04			
10	0.02			
20	0.03			
30	0.04			
40	0.05			
50	0.06			
60	0.08	0.04	0.04	
50	0.07			
40	0.07			
30	0.06			
20	0.05			
10	0.04			
30	0.06			
50	0.08			
70	0.09			
80	0.13	0.06	0.07	
70	0.12			
50	0.11			
30	0.10			
10	0.07			
30	0.09		·····	
50	0.11			
70	0.12			
80	0.13			
90	0.15		***************************************	
100	0.25	0.07	0.18	
90	0.24			
80	0.24			
70	0.23			
50	0.21			
30	0.20		w	
10	0.18		***************************************	

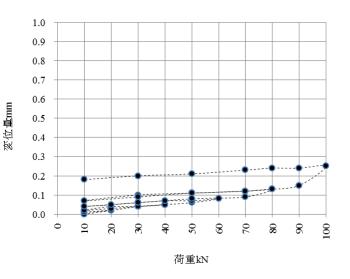


図-2.1 荷重-変位量曲線

2.2 地盤反力係数

表-2.1 の塑性変位量をアンカー体拘束具の引抜量とすれば、これに基づく定着地盤(孔壁)の拡径量は次式より求められる。

「拡径量=引抜量×アンカー体拘束具のテーパー角 7.5/100」

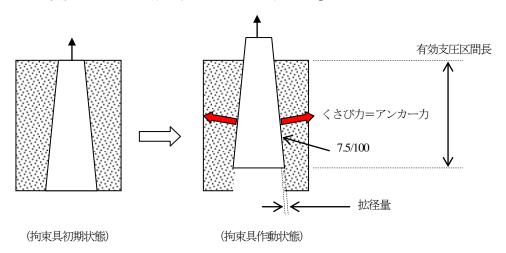


図-2.2 アンカー体拘束具の塑性変位(引抜量)と拘束地盤 の拡径量及び有効支圧区間長を説明する図

この時の有効支圧区間長および定着地盤に作用する有効応力は 有効支圧区間長=(拘束具ユニット長 10cm-引抜量)×拘束具ユニット数 有効応力=荷重/(有効支圧区間長×アンカー孔径×π)

これに基づく定着地盤の拡径量と有効応力は表-2.2のようになり、これを図化したものが図-2.3である。同図より、拡径量の増加にともなう有効応力は概ね比例関係にあり、回帰曲線の勾配($k=135009 \mathrm{N/cm}^3$)が地盤反力係数(定着地盤を $1\mathrm{cm}$ 変形させるに要する力)となる.

荷重 kN	引抜量	拡径量	有効応力	
kN	cm	cm	N/cm ²	
20	0.001	0.0001	49	
40	0.002	0.0002	98	
60	0.004	0.0003	147	
80	0.007	0.0005	196	
100	0.018	0.0014	245	

表-2.2 引抜変位に基づく拡径量と有効応力

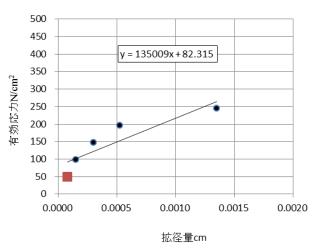


図-2.3 拡径量--有効応力曲線

3. 深層アンカーの設計

深層アンカーの定着長は次式より求める.

$$l = \frac{a f P_a}{\pi d_B q}$$

ここに, l: アンカー体長,

a:修正係数 (=2.0)

f:安全率 (=2.5),

 d_B : アンカー孔径 (=65mm),

 P_a : 設計荷重(N)

q: 地盤反力度 $(=k \cdot r)$,

k: 地盤反力係数 (試験結果より 135009N/cm³)

r: 最大有効地盤変位量 0.375cm(くさびを 50mm 引抜いたときの地盤拡径量に相当).

計算結果は表-3.1 のようであり、各アンカーとも定着長は0.2m(20cm 括約)となる.

表-3.1 深層アンカーの定着長

設計荷重kN/本	定着長cm		
20	0.1	\rightarrow	20
40	0.2	\rightarrow	20
60	0.3	\rightarrow	20
80	0.4	\rightarrow	20
100	0.5	\rightarrow	20

以上